47 research outputs found

    Diversity Antenna for Vehicular Communications in Microwave and mm-Wave Bands

    Get PDF
    A dual band diversity antenna is proposed for vehicular communications. The antenna works at both 5.9 GHz and 60 GHz simultaneously which makes it a suitable candidate for next generation intelligent transportation systems (ITS). High isolation of the two antenna elements with transmission less than -25 dB at both bands guarantees an optimum diversity performance. The theoretical limit of the diversity gain according to the propagation condition is investigated. It is shown that the effective diversity antenna gain (DAG) of the design is 8.7 dB in a uniform propagation scenario which is only 0.04 dB less than the theoretical limit

    Multi-Antenna Array Topologies Optimization for Future Wireless Networks by Employing Particle Swarm Optimization

    Get PDF
    The purpose of this work is to design novel antenna array topologies that maximize channel capacity. Accordingly, we employ the particle swarm optimization (PSO) algorithm as an effective technique in similar electromagnetic problems. We use a novel modelling approach to derive the spatial fading correlation function by employing a generic three-dimensional (3-D) angle of arrival (AOA) model. We then employ the PSO algorithm to find the antenna array topology that maximizes the channel capacity. The use of the PSO algorithm together with the new modelling approach for the spatial correlation is sufficiently tested and verified in terms of efficiency and correctness of addressing similar type of electromagnetic problems. Moreover, the general AOA model of this work is adaptable to different propagation environments, thus our approach is very promising in this regard

    Covariance Matrix Evaluation of a Diversity Slot Antenna for Vehicular Communications

    Get PDF
    A dual-port slot antenna is proposed for vehicular communications. The antenna works at 5.9 GHz in intelligent transportation system (ITS) band. The diversity performance of the design is evaluated using a novel covariance matrix methodology based on reciprocity theorem. The performance evaluation at the early design stage is explained for the first time by relating the radiation pattern of the designed antenna to the effective length matrix. The antenna offers -21 dB of isolation and a minimum gain of 6.5 dB before mounting on the vehicle roof. The evaluated effective diversity gain is 8.6 db

    Spatial channel degrees of freedom for optimum antenna arrays

    Get PDF
    One of the ultimate goals of future wireless networks is to maximize data rates to accommodate bandwidth-hungry services and applications. Thus, extracting the maximum amount of information bits for given spatial constraints when designing wireless systems will be of great importance. In this paper, we present antenna array topologies that maximize the communication channel capacity for given number of array elements while occupying minimum space. Capacity is maximized via the development of an advanced particle swarm optimization (PSO) algorithm devising optimum standardized and arbitrarily-shaped antenna array topologies. Number of array elements and occupied space are informed by novel heuristic spatial degrees of freedom (SDoF) formulations which rigorously generalize existing SDoF formulas. Our generalized SDoF formulations rely on the differential entropy of three-dimensional (3D) angle of arrival (AOA) distributions and can associate the number of array elements and occupied space for any AOA distribution. The proposed analysis departs from novel closed-form spatial correlation functions (SCFs) of arbitrarily-positioned array elements for all classes of 3D multipath propagation channels, namely, isotropic, omnidirectional, and directional. Extensive simulation runs and comparisons with existing trivial solutions verify correctness of our SDoF formulations resulting in optimum antenna array topologies with maximum capacity performance and minimum space occupancy

    Spatial Channel Degrees of Freedom for Optimum Antenna Arrays

    Get PDF
    One of the ultimate goals of future wireless networks is to maximize data rates to accommodate bandwidth-hungry services and applications. Thus, extracting the maximum amount of information bits for given spatial constraints when designing wireless systems will be of great importance. In this paper, we present antenna array topologies that maximize the communication channel capacity for given number of array elements while occupying minimum space. Capacity is maximized via the development of an advanced particle swarm optimization (PSO) algorithm devising optimum standardized and arbitrarily-shaped antenna array topologies. Number of array elements and occupied space are informed by novel heuristic spatial degrees of freedom (SDoF) formulations which rigorously generalize existing SDoF formulas. Our generalized SDoF formulations rely on the differential entropy of three-dimensional (3D) angle of arrival (AOA) distributions and can associate the number of array elements and occupied space for any AOA distribution. The proposed analysis departs from novel closed-form spatial correlation functions (SCFs) of arbitrarily-positioned array elements for all classes of 3D multipath propagation channels, namely, isotropic, omnidirectional, and directional. Extensive simulation runs and comparisons with existing trivial solutions verify correctness of our SDoF formulations resulting in optimum antenna array topologies with maximum capacity performance and minimum space occupancy

    Inter-Particle Electronic and Ionic Modifications of the Ternary Ni-Co-Mn Oxide for Efficient and Stable Lithium Storage

    Get PDF
    A combined electronic and ionic interparticular modification strategy is designed for the improvement of lithium storage in the layer structured ternary Ni-Co-Mn oxide (LiNi0.6Co0.2Mn0.2O2) in the form of spherical particles. In this design, a thin layer of the ion conducting polypropylene carbonate is applied to wrap the individual oxide particles for three purposes: (1) prevention of direct stacking and packing between oxide particles that will otherwise impede or block ions from accessing all the surface of the oxide particles, (2) provision of additional ionic pathways between the oxide particles, and (3) stabilization of the oxide particles during lithium storage and release. The design includes also the use of nitrogen doped carbon nanotubes for electronic connection between the polymer coated individual spheres of the layered nickel-rich LiNi0.6Co0.2Mn0.2O2. According to the physicochemical and electrochemical characterizations, and laboratory battery tests, it can be concluded that the LiNi0.6Co0.2Mn0.2O2 composite has a unique porous structure that is assembled by the polymer coated ternary oxide microspheres and the nitrogen-doped carbon nanotube networks. Significant improvements are achieved in both the ionic and electronic conductivities (double or more increase), and in discharge specific capacity (201.3 mAh·g−1 at 0.1 C, improved by 13.28% compared to the non-modified LiNi0.6Co0.2Mn0.2O2), rate performance and cycling stability (94.40% in capacity retention after 300 cycles at 1.0 C)

    Carbon benefits of wolfberry plantation on secondary saline land in Jingtai oasis, Gansu:A case study on application of the CBP model

    Get PDF
    The largest global source of anthropogenic CO2 emissions comes from the burning of fossil fuel and approximately 30% of total net emissions come from land use and land use change. Forestation and reforestation are regarded worldwide as effective options of sequestering carbon to mitigate climate change with relatively low costs compared with industrial greenhouse gas (GHG) emission reduction efforts. Cash trees with a steady augmentation in size are recognized as a multiple-beneficial solution to climate change in China. The reporting of C changes and GHG emissions for sustainable land management (SLM) practices such as afforestation is required for a variety of reasons, such as devising land management options and making policy. The Carbon Benefit Project (CBP) Simple Assessment Tool was employed to estimate changes in soil organic carbon (SOC) stocks and GHG emissions for wolfberry (Lycium barbarum L.) planting on secondary salinized land over a 10 year period (2004–2014) in the Jingtai oasis in Gansu with salinized barren land as baseline scenario. Results show that wolfberry plantation, an intensively managed ecosystem, served as a carbon sink with a large potential for climate change mitigation, a restorative practice for saline land and income stream generator for farmers in soil salinized regions in Gansu province. However, an increase in wolfberry production, driven by economic demands, would bring environmental pressures associated with the use of N fertilizer and irrigation. With an understanding of all of the components of an ecosystem and their interconnections using the Drivers-Pressures-State-Impact-Response (DPSIR) framework there comes a need for strategies to respond to them such as capacity building, judicious irrigation and institutional strengthening. Cost benefit analysis (CBA) suggests that wolfberry cultivation was economically profitable and socially beneficial and thus well-accepted locally in the context of carbon sequestration. This study has important implications for Gansu as it helps to understand the role cash trees can play in carbon emission reductions. Such information is necessary in devising management options for sustainable land management (SLM)

    Highly-dispersed nickel nanoparticles decorated titanium dioxide nanotube array for enhanced solar light absorption

    Get PDF
    Honeycomb titanium dioxide nanotube array (TiO2-NTA) decorated by highly-dispersed nickel nanoparticles (Ni-NPs) has been grown under control on Ti foil by anodization and subsequent electrodeposition. The pore diameter and length of TiO2-NTA, and the size and quantity of Ni-NPs can be controlled via modulating the variables of the electrochemical processes. It has been found that the pretreatment of TiO2-NTA in the Cu(NO3)2 solution and further annealing at 450 °C in air could greatly improve the dispersion of the electrodeposited Ni-NPs. Absorption of the light in the solar spectrum from 300 to 2500 nm by the Ni-NPs@TiO2-NTA is as high as 96.83%, thanks to the co-effect of the light-trapping of TiO2-NTA and the plasmonic resonance of Ni-NPs. In the water heating experiment performed under an illuminating solar power density of ∼1 kW m−2 (AM 1.5), the ultimate temperature over 66 °C and an overall efficiency of 78.9% within 30 min were obtained, promising for applications in photothermal conversion and solar energy harvest
    corecore